CYANIDE A-1

APPENDIX A

ATSDR MINIMAL RISK LEVEL

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U. S.C. 9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99-4991, requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological profiles for each substance included on the priority list of hazardous substances; and assure the initiation of a research program to fill identified data needs associated with the substances.

The toxicological profiles include an examination, summary, and interpretation of available toxicological information and epidemiologic evaluations of a hazardous substance. During the development of toxicological profiles, Minimal Risk Levels (MRLS) are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of cancer effects. These substancespecific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors to identify contaminants and potential health effects that may be of concern at hazardous waste sites. It is important to note that MRLs are not intended to define clean-up or action levels.

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor approach. They are below levels that might cause adverse health effects in the people most sensitive to such chemical-induced effects. MRLs are derived for acute (1-14 days), intermediate (15-364 days), and chronic (365 days and longer) durations and for the oral and inhalation routes of exposure. Currently, MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method suitable for this route of exposure. MRLs are generally based on the most sensitive chemical-induced end point considered to be of relevance to humans. Serious health effects (such as irreparable damage to the liver or kidneys, or birth defects) are not used as a basis for establishing MRLs. Exposure to a level above the MRL does not mean that adverse health effects will occur.

CYANIDE A-2 APPENDIX A

MRLs are intended only to serve as a screening tool to help public health professionals decide where to look more closely. They may also be viewed as a mechanism to identify those hazardous waste sites that are not expected to cause adverse health effects. Most MRLs contain a degree of uncertainty because of the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, elderly, nutritionally or immunologically compromised) to the effects of hazardous substances. ATSDR uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health principle of prevention. Although human data are preferred, MRLs often must be based on animal studies because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes that humans are more sensitive to the effects of hazardous substance than animals and that certain persons may be particularly sensitive. Thus, the resulting MRL may be as much as a hundredfold below levels that have been shown to be nontoxic in laboratory animals.

Proposed MRLs undergo a rigorous review process: Health EffectsIMRL Workgroup reviews within the Division of Toxicology, expert panel peer reviews, and agencywide MRL Workgroup reviews, with participation from other federal agencies and comments from the public. They are subject to change as new information becomes available concomitant with updating the toxicological profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published levels. For additional information regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road, Mailstop E-29, Atlanta, Georgia 30333.

MINIMAL RISK LEVEL WORKSHEET

Chemical name: Cyanide
CAS number: 143-33-9
Date: August 1997

Profile status: Final

Route: [] Inhalation [x] Oral

Duration: [] Acute [x] Intermediate [] Chronic

Key to figure: 32 Species: rat

MRL: <u>0.05</u> [x] mg/kg/day [] ppm [] mg/m³

<u>Reference</u>: National Toxicology Program. 1993. NTP Technical Report on Toxicity Studies of Sodium Cyanide Administered in Drinking Water to F344/N Rats and B6C3Fl Mice. United States Department of Health and Human Services, Public Health Service, National Institutes of Health. NIH Publication 94-3386.

Experimental Design: Ten male and ten female rats were given 0, 0.2, 0.5, 1.4 (males), 1.7 (females), 4.5 (males), 4.9 (females), or 12.5 mg/kg/day cyanide in the drinking water for 13 weeks, as sodium cyanide. At the end of the study, the animals were evaluated for histopathology, clinical chemistry, hematology, urine chemistry, and reproductive toxicity. The heart, kidneys, liver, lung, testes, and thymus were weighed. Complete histopathologic examinations were performed on all animals in the 0 and 12.5 mglkglday dose groups. Blood from the base study rats was collected on days 86 (males) and 93 (females), and from the supplemental study rats on days 5, 25, 45, and 92 for hematology and clinical chemistry. Urinalysis samples were collected from the rats on days 5,25,45, and 92. Vaginal cytology and sperm motility evaluations were performed for 12 days prior to sacrifice. Numbers of leukocytes, nucleated epithelial cells, and large squamous epithelial cells were determined from vaginal swabs to ascertain estrous cycle stage. Sperm motility, density, and spermatogenesis were evaluated at necropsy.

Effects noted in study and corresponding doses: Sperm motility and vaginal cytology examinations were performed on rats. Decreased left epididymis weight, left cauda epididymis weight, left testis weight, spermatid heads, and spermatid counts were observed at 12.5 mg/kg/day. At 1.4 and 4.5 mg/kg/day, significantly decreased weight of the left cauda epididymis and spermatozoa motility were observed; however, these effects alone were not considered to be adverse. For females, more time was spent in proestrus and diestrus stages and less time in estrus and metestrus stages in the 4.9 and 12.5 mg/kg/day dose groups. However, this was not considered to be an adverse effect.

 $\underline{Dose\ endpoint\ used\ for\ MRL\ derivation} : 4.5\ mg/kg/day,\ based\ on\ NOAEL\ for\ no\ reproductive\ effects\ in\ male\ rats$

[x] NOAEL []LOAEL

APPENDIX A

Officeratinity factors used in which derivation . 100	Uncertainty factors used in MRL derivation: 10)()
---	--	-----

[]1[]	3 [] 10(for use of a LOAEL)
[]1[]	3 [x] 10 (for extrapolation from animals to humans)
[]1[3 [x] 10 (for human variability)
MRL =	4.5 mg/kg/day/100 = 0.05 mg/kg/day

Was a conversion factor used from ppm in food or water to a mg/body weight dose? yes If so, explain: The doses based on water consumption as reported by the author were 0, 0.3, 0.9, 1.0, 2.7, 3.2, 8.5, 9.2,23.5, and 23.6 mg NaCN/kg/day. These doses were converted from sodium cyanide to cyanide by multiplying each dose by 0.53 (CN-/NaCN); resulting in dose levels of 0, 0.2, 0.5, 1.4 (males), 1.7 (females), 4.5 (males), 4.9 (females), or 12.5 mg/kg/day cyanide.

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: N/A

Was a conversion used from intermittent to continuous exposure? No If so, explain:

Other additional studies or pertinent information that lend support to this MRL: This study showed reproductive effects at all dose levels. The effects noted at 1.4 and 4.5 mg/kg/day, significantly decreased weight of the left cauda epididymis and spermatozoa motility, were not considered by themselves to be adverse. However, at 12.5 mg/kg/day, a large number of reproductive effects were noted, which were considered to be adverse.

Other studies on cyanide support this MRL. Increased resorptions were noted in rats following oral exposure to cyanogenic glycosides in a cassava diet (Singh 1981), and increased gonadal weight in male rats exposed to copper cyanide (Gerhart 1986) or potassium silver cyanide (Gerhart 1987) for 90 days were noted. A reduction in the spermatogenic cycle and testicular germ cell sloughing and degeneration were noted in dogs fed rice with sodium cyanide added, while no reproductive effects were noted in dogs fed a cassava diet (Kamalu 1993). A LOAEL of 1.04 mg/kg/day based on systemic and reproductive effects in dogs was identified (Kamalu 1993). However, this study was not used to derive the intermediate oral MRL because dogs are not a good model for human toxicity. This is because dogs have very low levels of rhodenase, an enzyme which is used to detoxify cyanide.

Agency Contact (Chemical Manager): Carolyn Harper

USER'S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended audience is the general public especially people living in the vicinity of a hazardous waste site or chemical release. If the Public Health Statement were removed from the rest of the document, it would still communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The topics are written in a question and answer format. The answer to each question includes a sentence that will direct the reader to chapters in the profile that will provide more information on the given topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2-1, 2-2, and 2-3) and figures (2-1 and 2-2) are used to summarize health effects and illustrate graphically levels of exposure associated with those effects. These levels cover health effects observed at increasing dose concentrations and durations, differences in response by species, minimal risk levels (MRLs) to humans for noncancer endpoints, and EPA's estimated range associated with an upper-bound individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the health effects and to locate data for a specific exposure scenario. The LSE tables and figures should always be used in conjunction with the text. All entries in these tables and figures represent studies that provide reliable, quantitative estimates of No-Observed-Adverse-Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs), or Cancer Effect Levels (CELs).

The legends presented below demonstrate the application of these tables and figures. Representative examples of LSE Table 2-1 and Figure 2-1 are shown. The numbers in the left column of the legends correspond to the numbers in the example table and figure.

LEGEND

See LSE Table 2-1

- (1) Route of Exposure One of the first considerations when reviewing the toxicity of a substance using these tables and figures should be the relevant and appropriate route of exposure. When sufficient data exists, three LSE tables and two LSE figures are presented in the document. The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and dermal (LSE Table 2-1,2-2, and 2-3, respectively). LSE figures are limited to the inhalation (LSE Figure 2-1) and oral (LSE Figure 2-2) routes. Not all substances will have data on each route of exposure and will not therefore have all five of the tables and figures.
- (2) <u>Exposure Period</u> Three exposure periods acute (less than 15 days), intermediate (15-364 days), and chronic (365 days or more) are presented within each relevant route of exposure. In this example, an inhalation study of intermediate exposure duration is reported. For quick reference to

- health effects occurring from a known length of exposure, locate the applicable exposure period within the LSE table and figure.
- (3) <u>Health Effect</u> The major categories of health effects included in LSE tables and figures are death, systemic, immunological, neurological, developmental, reproductive, and cancer. NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. Systemic effects are further defined in the "System" column of the LSE table (see key number 18).
- (4) <u>Key to Figure</u> Each key number in the LSE table links study information to one or more data points using the same key number in the corresponding LSE figure. In this example, the study represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL (also see the 2 "18r" data points in Figure 2-1).
- (5) <u>Species</u> The test species, whether animal or human, are identified in this column. Section 2.4, "Relevance to Public Health," covers the relevance of animal data to human toxicity and Section 2.3, "Toxicokinetics," contains any available information on comparative toxicokinetics. Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent human doses to derive an MRL.
- (6) Exposure Frequency/Duration The duration of the study and the weekly and daily exposure regimen are provided in this column. This permits comparison of NOAELs and LOAELs from different studies. In this case (key number 1 S), rats were exposed to toxaphene via inhalation for 6 hours per day, 5 days per week, for 3 weeks. For a more complete review of the dosing regimen refer to the appropriate sections of the text or the original reference paper, i.e., Nitschke et al. 1981.
- (7) <u>System</u> This column further defines the systemic effects. These systems include: respiratory, cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermaYocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered in these systems. In the example of key number 18, 1 systemic effect (respiratory) was investigated.
- (8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which no harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of 3 ppm for the respiratory system which was used to derive an intermediate exposure, inhalation MRL of 0.0005 ppm (see footnote "b").
- (9) LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest dose used in the study that caused a harmful health effect. LOAELs have been classified into "Less Serious" and "Serious" effects. These distinctions help readers identify the levels of exposure at which adverse health effects first appear and the gradation of effects with increasing dose. A brief description of the specific endpoint used to quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key number 18 (hyperplasia) is a Less serious LOAEL of 10 ppm. MRL's are not derived from Serious LOAELs.
- (10) <u>Reference</u> The complete reference citation is given in chapter 8 of the profile.
- (11) <u>CEL</u> A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of carcinogenesis in experimental or epidemiologic studies. CEL's are always considered serious effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report doses not causing measurable cancer increases.

B-3

(12) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found in the footnotes. Footnote "b" indicates the NOAEL of 3 ppm in key number 18 was used to derive an MRL of 0.0005 ppm.

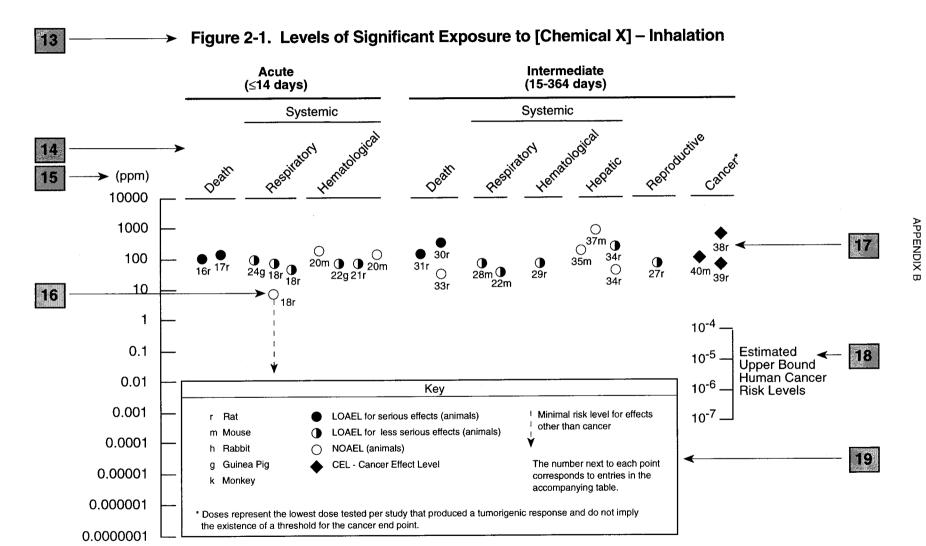
LEGEND

See Figure 2-1

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the reader quickly compare health effects according to exposure concentrations for particular exposure periods.

- (13) Exposure Period The same exposure periods appear as in the LSE table. In this example, health effects observed within the intermediate and chronic exposure periods are illustrated.
- (14) <u>Health Effect</u> These are the categories of health effects for which reliable quantitative data exists. The same health effects appear in the LSE table.
- (15) <u>Levels of Exposure</u> concentrations or doses for each health effect in the LSE tables are graphically displayed in the LSE figures. Exposure concentration or dose is measured on the log scale "y" axis. Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in mg/kg/day.
- (16) <u>NOAEL</u> In this example, 18r NOAEL is the critical endpoint for which an intermediate inhalation exposure MRL is based. As you can see from the LSE figure key, the open-circle symbol indicates to a NOAEL for the test species-rat. The key number 18 corresponds to the entry in the LSE table. The dashed descending arrow indicates the extrapolation from the exposure level of 3 ppm (see entry 18 in the Table) to the MRL of 0.0005 ppm (see footnote "b" in the LSE table).
- (17) <u>CEL</u> Key number 38r is 1 of 3 studies for which Cancer Effect Levels were derived. The diamond symbol refers to a Cancer Effect Level for the test species-mouse. The number 38 corresponds to the entry in the LSE table.
- (18) Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the upper-bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are derived from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the cancer dose response curve at low dose levels (qt *).
- (19) Key to LSE Figure The Key explains the abbreviations and symbols used in the figure.

SAMPLE


TABLE 2-1. Levels of Significant Exposure to [Chemical x] – Inhalation Exposure LOAEL (effect) frequency/ Key to **NOAEL** Less serious (ppm) figurea Species duration Reference System (ppm) INTERMEDIATE EXPOSURE 5 6 8 10 7 Systemic 18 Rat 10 (hyperplasia) 13 wk Resp Nitschke et al. 5d/wk 1981 6hr/d CHRONIC EXPOSURE 11 Cancer 38 Rat (CEL, multiple 18 mo Wong et al. 1982 5d/wk organs) 7hr/d 39 10 (CEL, lung tumors, Rat 89-104 wk NTP 1982 5d/wk nasal tumors) 6hr/d 40 79-103 wk (CEL, lung tumors, Mouse NTP 1982 hemangiosarcomas) 5d/wk 6hr/d

b upportainty factor of 100 (10 for system eletion from

uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability).

CEL = cancer effect level; d = days(s); hr = hour(s); LOAEL = lowest-observed-adverse-effect level; mo = month(s); NOAEL = no-observed-adverse-effect level; Resp = respiratory; wk = week(s)

^a The number corresponds to entries in Figure 2-1.

Chapter 2 (Section 2.5)

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of existing toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to present interpretive, weight-of-evidence discussions for human health endpoints by addressing the following questions.

- 1. What effects are known to occur in humans?
- 2. What effects observed in animals are likely to be of concern to humans?
- 3. What exposure conditions are likely to be of concern to humans, especially around hazardous waste sites?

The section covers endpoints in the same order they appear within the Discussion of Health Effects by Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human data are presented first, then animal data. Both are organized by duration (acute, intermediate, chronic). In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered in this section. If data are located in the scientific literature, a table of genotoxicity information is included. The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency or perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer endpoints (if derived) and the endpoints from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public health are identified in the Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, we have derived minimal risk levels (MRLs) for inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not meant to support regulatory action; but to acquaint health professionals with exposure levels at which adverse health effects are not expected to occur in humans. They should help physicians and public health officials determine the safety of a community living near a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water. MRLs are based largely on toxicological studies in animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based. Chapter 2.5, "Relevance to Public Health," contains basic information known about the substance. Other sections such as 2.7, "Interactions with Other Substances," and 2.8, "Populations that are Unusually Susceptible" provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a modified version of the risk assessment methodology the Environmental Protection Agency (EPA) provides (Barnes and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).

CYANIDE B-7 APPENDIX B

To derive an MRL, ATSDR generally selects the most sensitive endpoint which, in its best judgement, represents the most sensitive human health effect for a given exposure route and duration. ATSDR cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available for all potential systemic, neurological, and developmental effects. If this information and reliable quantitative data on the chosen endpoint are available, ATSDR derives an MRL using the most sensitive species (when information from multiple species is available) with the highest NOAEL that does not exceed any adverse effect levels. When a NOAEL is not available, a lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor (UF) of 10 must be employed. Additional uncertainty factors of 10 must be used both for human variability to protect sensitive subpopulations (people who are most susceptible to the health effects caused by the substance) and for interspecies variability (extrapolation from animals to humans). In deriving an MRL, these individual uncertainty factors are multiplied together. The product is then divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used in developing a substance-specific MRL are provided in the footnotes of the LSE Tables.

CYANIDE C-1

APPENDIX C

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACGIH American Conference of Governmental Industrial Hygienists

ADME Absorption, Distribution, Metabolism, and Excretion

atm atmosphere

ATSDR Agency for Toxic Substances and Disease Registry

BCF bioconcentration factor

BSC Board of Scientific Counselors

C Centigrade

CDC Centers for Disease Control
CEL Cancer Effect Level

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations
CLP Contract Laboratory Program

cm centimeter

CNS central nervous system

d day

DHEW Department of Health, Education, and Welfare DHHS Department of Health and Human Services

DOL Department of Labor ECG electrocardiogram EEG electroencephalogram

EPA Environmental Protection Agency

EKG see ECG Fahrenheit

F₁ first filial generation

FAO Food and Agricultural Organization of the United Nations

FEMA Federal Emergency Management Agency

FIFRA Federal Insecticide, Fungicide, and Rodenticide Act

fpm feet per minute

ft foot

FR Federal Register

g gram

GC gas chromatography

gen generation

HPLC high-performance liquid chromatography

hr hour

IDLH Immediately Dangerous to Life and Health IARC International Agency for Research on Cancer

ILO International Labor Organization

in inch

kd adsorption ratio kg kilogram kkg metric ton

 K_{oc} organic carbon partition coefficient K_{ow} octanol-water partition coefficient

L liter

 $\begin{array}{cc} LC & \text{liquid chromatography} \\ LC_{LO} & \text{lethal concentration, low} \end{array}$

CYANIDE C-2

APPENDIX C

LC₅₀ lethal concentration, 50% kill

 $\begin{array}{cc} LD_{LO} & \text{lethal dose, low} \\ LD_{50} & \text{lethal dose, } 50\% \text{ kill} \end{array}$

LOAEL lowest-observed-adverse-effect level LSE Levels of Significant Exposure

m meter
mg milligram
min minute
ml milliliter
mm millimeter

mmHG millimeters of mercury

mmol millimole mo month

mppcf millions of particles per cubic foot

MRL Minimal Risk Level MS mass spectrometry

NIEHS National Institute of Environmental Health Sciences
NIOSH National Institute for Occupational Safety and Health
NIOSHTIC NIOSH's Computerized Information Retrieval System

ng nanogram nm nanometer

NHANES National Health and Nutrition Examination Survey

nmol nanomole

NOAEL no-observed-adverse-effect level NOES National Occupational Exposure Survey NOHS National Occupational Hazard Survey

NPL National Priorities List
NRC National Research Council

NTIS National Technical Information Service

NTP National Toxicology Program

OSHA Occupational Safety and Health Administration

PEL permissible exposure limit

Pg picogram pm01 picomole

PHS Public Health Service
PMR proportionate mortality ratio

PPb parts per billion mm parts per million PPt parts per trillion

REL recommended exposure limit

RfD Reference Dose

RTECS Registry of Toxic Effects of Chemical Substances

set second

SCE sister chromatid exchange SIC Standard Industrial Classification

SMR standard mortality ratio
STEL short term exposure limit
STORET STORAGE and RETRIEVAL

TLV threshold limit value

TSCA Toxic Substances Control Act

CYANIDE C-3

APPENDIX C

Toxics Release Inventory time-weighted average TRI TWA

U.S. United States UF uncertainty factor

yr

World Health Organization WHO

week wk

> greater than

greater than or equal to

≥ = equal to < less than

 \leq less than or equal to

% percent alpha α beta β delta δ gamma γ micrometer μm microgram μg